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Abstract 

This paper revisits the estimation of private returns to R&D. In an extension of the standard 

approach, we allow for endogeneity of production decisions, heterogeneity of R&D elasticities, and 

asymmetric treatment of intramural and extramural R&D. Our empirical analyses are based on an 

extended Cobb-Douglas production function that allows for firms with zero R&D capital, which is 

especially useful for studying firms’ transition from being R&D-non—active to becoming R&D-active. 

Using a large panel of Norwegian firms observed in the period 2001-2018, we estimate the average 

private net return to be in the range 0-5 percent across a variety of model specifications if we treat 

intra- and extramural R&D symmetrically. If in compliance with the Frascati manual, we treat 

intramural R&D as investment and extramural R&D as intermediate input, the estimated net return 

increases to 5-10 percent. 
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Sammendrag 

I denne artikkelen estimeres den private avkastningen av investeringer i FoU. I en utvidelse av 

standardtilnærmingen i faglitteraturen tillater vi endogen produksjonsbeslutning, heterogenitet i 

FoU-elastisiteter og asymmetrisk behandling av intern og ekstern FoU. Våre empiriske analyser er 

basert på en utvidet Cobb-Douglas produktfunksjon som tillater at vi kan inkludere foretak uten FoU 

i analysen. Det er spesielt nyttig for å studere overganger fra å være FoU-inaktiv til å bli FoU-aktiv. 

Ved hjelp av et omfattende panel av norske foretak observert i perioden 2001-2018, estimerer vi 

gjennomsnittlig privat nettoavkastning av investeringer i FoU til 0-5 prosent dersom vi behandler 

intern og ekstern FoU symmetrisk. Hvis vi derimot, i samsvar med Frascati-manualens anbefalinger, 

behandler intern FoU som investeringer og ekstern FoU som produktinnsats, øker den estimerte 

nettoavkastningen til 5-10 prosent. Disse resultatene indikerer høyere avkastning av intern enn 

ekstern FoU og reflekterer et tydelig mønster i dataene: at veksten i aggregerte FoU-utgifter i Norge i 

2001-2018 kun skyldes vekst i intern FoU. Uansett er våre estimater av avkastningen av investeringer 

i FoU lave sammenlignet med estimater rapportert i den ofte siterte undersøkelsen av Hall m.fl. 

(2010), men av samme størrelsesorden som meta-regresjonsestimatene rapportert av Ugur et al. 

(2016), basert på et større og nyere utvalg av artikler enn 2010-studien.  



1 Introduction

Private returns to R&D are of key interest to many public and private agents, such as

investors, businesses and policy-makers. The returns are often found to be higher for

R&D investments than for other investments, a fact which is used by various interest

groups to promote broad R&D policies or own business interests more specifically

(see Bührer et al., 2020). Evidence of high general private returns to R&D might

convince the public that R&D support policies are worth their costs to taxpayers,

despite evidence that some schemes generate little in terms of spillover effects (see

Nilsen et al., 2020), or attract customers to firms that sell R&D services.

The amount of public R&D support is large and increasing in most developed

countries. In Norway, for example, total public R&D support (tax credits plus

grants) to business enterprise R&D (BERD) increased from 0.11 to 0.22 percent of

GDP from 2006 to 2018, whereas BERD itself increased from 0.78 to 1.05 percent.

In comparison, the average public support to BERD in the OECD area increased

from 0.15 to 0.18 percent of GDP (see OECD, 2022). From a public policy view, it is

therefore more important than ever to have valid and reliable methods for assessing

the private returns to R&D.

While there are many approaches to estimating returns to R&D in the literature

– whether primal or dual (see the survey by Hall et al., 2010) – they almost all

have in common that they derive return estimates from the productivity impact of

R&D under a ceteris paribus assumption. In the primal approach, the marginal

return to R&D is equivalent to the increase in output (Y ) as a result of an increase

in R&D (F ). For example, Doraszelski and Jaumandreu (2013) refer to returns to

R&D when presenting the elasticity of output with respect to R&D expenditures.

However, it is more common to transform elasticities (β) into marginal returns (R)

using the definition of R&D elasticity: β = R(F/Y ). In the dual approach, R refers

to the corresponding reduction in costs for a given output. For example, Bernstein

and Nadiri (1988) define R as the real cost reduction due to a unit increase in F for

a given Y .

In the primal approach, the most common way of specifying the underlying pro-

duction function is by way of Cobb–Douglas with equal (homogeneous) elasticities
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across firms. However, according to R&D surveys, most firms report that they

do not undertake any R&D at all, implying infinite returns at the extensive mar-

gin when Cobb–Douglas is applied. The standard solution is to estimate average

returns using only firms with positive R&D, i.e. excluding observations of firms

before they become R&D-active. This creates a sample selection problem that may

bias the results. Moreover, it does not remove the problem that returns will tend

to be very high at the margin for firms with low R&D intensity, which is likely to

inflate estimates of average returns purely because of a functional form assumption.

A more flexible assumption might be that firms have heterogeneous elasticities with

respect to R&D, which is consistent with the high heterogeneity of R&D intensity

observed in the data.

The effect of increasing R&D should arguably also incorporate the indirect effects

of optimally adjusting flexible inputs in response to increased R&D. A value-added

function, derived by treating (tangible and intangible) capital as quasi-fixed and

intermediate inputs and labour as fully flexible factors, might therefore be better

suited to assessing the private returns to R&D than simply measuring the increase in

productivity ceteris paribus. A value-added function would capture both the direct

and indirect effects of a (partial) change in R&D, reflecting both increased profits

to owners and increased earnings to employees.

We address the limitations of the existing literature in four ways. First, we

propose an extended Cobb–Douglas production function, where output depends on

a translation of the R&D capital stock with an unknown, but estimable, transla-

tion parameter to allow positive output from firms with zero R&D. This functional

form may be particularly useful for analyzing the transition from being an R&D

non-performer to being R&D-active. Second, we accommodate heterogeneity in ob-

served R&D intensities through firm-specific R&D elasticities to help explain the

very wide variation in R&D intensities across firms and why most firms do not en-

gage in R&D at all. Third, we derive return estimates from a value-added function,

where firms simultaneously optimize intermediate and labour inputs for any level

of capital – as opposed to a return measure that only incorporates the (first order)

impact of increased R&D on output or production costs. Fourth, we identify a po-
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tential problem of double counting related to extramural R&D, which we address by

capitalizing only intramural R&D and considering extramural R&D as intermediate

input.

We analyze a panel of Norwegian firms in all industries from 2001 to 2018. Treat-

ing intra- and extramural R&D symmetrically, we obtain estimates of the weighted

average private net return in the range of 0-5 percent, using the amounts of R&D

investment as weights. These estimates are low compared to estimates reported in

the often cited survey by Hall et al. (2010), but of the same magnitude as the meta-

regression estimates obtained by Ugur et al. (2016), based on a larger set of articles

than the 2010 study. However, if we only treat intramural R&D as investment, as

recommended by the Frascati manual, the estimated average net return increases

to 5-10 percent. These results indicate much higher returns to intramural than to

extramural R&D and indicate a distinct pattern in the data: that the growth in ag-

gregate real R&D spending in Norway in 2001-2018 is due to growth in intramural

R&D alone. We also show that allowing heterogeneity in R&D elasticities is key to

obtain robust and plausible estimates of returns to R&D within a family of model

variants, including Cobb-Douglas.

The structure of the rest of the paper is as follows: Section 2 discusses main

concepts and presents some studies relevant to our investigation. Section 3 describes

our theoretical framework for analyzing private returns to R&D, Section 4 presents

the econometric model, Section 5 presents the data, Section 6 shows the results and

Section 7 offers some concluding comments.

2 Main concepts and approaches to studying the

relationship between R&D and productivity

Several models of the relationship between R&D investment and productivity at

firm level have been proposed in the empirical literature. One general model struc-

ture, usually referred to as the CDM model, was proposed by Crepon, Duguet and

Mairesse (1998) following a conceptual model by Pakes and Griliches (1998). In this

model, firm output (Y ) can be expressed as a function of total factor productivity
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(A∗) and input factors labour (L), intermediate inputs (M) and capital (K):

Y = A∗f(L,M,K)., (1)

where A∗ is assumed to depend on several variables relating to R&D, market fac-

tors, industry, and other variables. One way of extending this model is to include

additional variables in Equation (1) to capture the effect of intangible investment

– both internal and external to the firm. One such factor is R&D, which is not

directly treated as primary input in the CDM framework, but is instead assumed to

influence A∗ through product and process innovations.

There is also a long tradition in economics of specifying R&D as a primary input

factor (F ) in a standard Cobb-Douglas production function– rather than indirectly

via product- and process innovations as in the CDM model (see Hall et. al., 2010) .

The factor F (R&D capital) is then explicitly included in Equation (1) in addition

to L,M,K. F is ususally generated by accumulating R&D spending according to

the perpetual inventory method (PIM):

Ft = (1− δ)Ft−1 + It−1, (2)

where δ is the depreciation rate of the R&D capital stock and I is (real) R&D

investment. The capital stocks (both K and F ) are assumed to be quasi-fixed, in

the sense that investments in period t− 1 affect output in period t and beyond. If

an estimate (or qualified guess) of the depreciation rate, δ, is available, one can: i)

calculate the R&D capital stock, Ft, using (2), ii) estimate the parameters of the

production function, and iii) derive an estimate of the average returns, R, to R&D

investments, It−1.

The Frascati manual (2005, Section 4.12) thoroughly discusses the problem of

double counting. A stylized example is a firm (A) that employs a researcher and

reports the person’s wage costs, wL, as intramural R&D, int = wL. Double counting

would occur if L is also counted as labour inputs (see Schankerman, 1981). We will

address this issue by deriving a value added function that depends, not on labour

(L), but on the wage rate (w).

A double-counting problem that has received far less attention in the literature

is related to extramural R&D. Assume that L in the above example could either
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produce output for firm A, generating profits πL (for some factor π), or provide

R&D services to another firm (B) at the hiring price x = (π + w)L. This would

not change the aggregate R&D input into the economy or the profits of firm A. In

both cases, int is intramural R&D for firm A, but in the latter case, x is extramural

R&D for firm B. It would be double counting if both int and x were capitalized as

R&D investment. This does not preclude x from generating excess return for B,

or increased value added in the aggregate economy. However, the increased value

added would be due to a more efficient allocation of the available R&D services in

the economy, not to increased aggregate R&D capital stock.

To avoid double counting of R&D, the Frascati Manual recommends using R&D

performed and not R&D financed. In other words, the extramural R&D of firm B

should be counted as internal R&D by the performing firm, A. In practice, double

counting may be a bigger problem at the aggregate level than at the firm level. For

example, it is far from obvious that firm A would actually report in-house R&D

financed by firm B as intramural R&D. Asymmetric treatment of intramural and

extramural R&D also raises the question of how to treat extramural R&D. A simple

(and natural) solution would be to treat it as intermediate input (M), in which case

it would increase the firm’s value added only by generating returns in excess of its

costs, x (which are intermediate costs).

One could also argue that the extramural R&D benefits the firm that has ordered

this R&D and should enter its knowledge (R&D) capital stock in the same way as

its intramural R&D.1 In practice, it may also be difficult to distinguish between

the two types: the same project may be carried out partly internally and partly

externally, and then it makes sense to treat the external and internal R&D as one

homogeneous input. The data also show that int and x are highly correlated, both in

levels and in (first) differences. For example, the raw correlation coefficient between

the differenced variables ∆int and ∆x is 0.23. The implication is that, to the extent

that x and int finance the same R&D projects, the estimated return on int would also

1In fact, this is how R&D is treated in the Norwegian National Accounts: Extramural R&D
is treated as an investment in the purchasing firms, but as production in the (research) institute
sector (see Sørensen, 2016). This would lead to a double counting problem if the investment was
not properly consolidated with the accounts data of the R&D producing firms, as discussed in the
Frascati manual.
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include some excess return on x. We conduct both a symmetric and an asymmetric

treatment of extramural and intramural R&D below, where, in the symmetric case,

I = int+x, and, in the asymmetric case, I = int, with x treated as an intermediate

input (i.e. included in M).

Increased worker quality is also an important source of productivity growth. For

example, Piekkola (2020) makes a distinction between R&D-labour, management-

and advertising-related labour, and general labour, and constructs a measure of

labour input quality based on the share of employees in each category and their

relative wages. Our approach is broadly in line with Piekkola (2020), with the

distinction that we measure labour quality by educational attainments rather than

by dividing employees into professional or task-related categories.

An important feature of the (standard) Cobb-Douglas production function frame-

work is that it cannot be applied to all firms without modifications, as it predicts

zero output from firms with zero R&D capital. In the literature, there are several

options available to circumvent that problem.

An important feature of the (standard) Cobb-Douglas production function frame-

work is that it cannot be applied to all firms without modification, as it predicts

zero output from firms with zero R&D capital. In the literature, there are several

options available for circumventing this problem. One “solution” is simply to study

those firms that report positive R&D and neglect the others. This strategy is prob-

lematic with regard to firms that become R&D-active in the observation period.

Including these firms from the year in which they become active creates a sample-

selection problem which may bias estimates of returns to R&D at the extensive

margin. Since potential R&D performers are often a target of public R&D policies,

the bias is potentially important from a policy perspective. The problem of sample

selection can be addressed ad hoc by adding a small amount of R&D investment to

firms with zero reported R&D, which makes it technically possible to include them

in the analysis. A refinement of this solution is suggested by Griffith et al. (2006)

and Hall et al. (2013). Relying on the CDM approach, they replace observed R&D

spending with imputed R&D using data for all firms. In this way, zero R&D is

replaced by non-zero imputed R&D. While this approach may perhaps be justified
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for firms that report zero R&D in some years, it does not allow us to study returns

to R&D on the extensive margin, i.e. the returns on becoming R&D-active.

Finally, one can specify a more flexible functional form that allows zero R&D,

as suggested already by Griliches (1979). The advantage of this solution, which we

favour, is that it takes all observations at face value, without any need to alter the

data.

3 Empirical model

Our starting point is an extended Cobb-Douglas production function with labour,

intermediates, tangible capital and R&D capital as inputs. The first extension is

that we assume that the production function has output elasticity of β in a trans-

lation, λ + F , of the R&D capital stock, F , for some value of λ > 0. The marginal

returns to R&D will then be finite even with zero R&D. In fact, our extension is

a special case of the Stone-Geary production function (see Beattie and Aradhyula,

2015), where only one factor, F , is translated. The second extension is that the

production function is homogenous of degree ε in an aggregate function g(L) of the

vector L = (L(1), L(2), L(3)) of man-years from three skill classes. Although there

are examples of studies that control for the quality of labour input (e.g. Doraszelski

and Jaumandreu, 2013), our approach is among the most elabourate in this respect

(Doraszelski and Jaumandreu, op. cit., only distinguish between temporary and

permanent employees). Since R&D-active firms generally hire more educated and

more highly paid workers than other firms, the assumption of homogeneous labour

across education groups risks confounding the productivity effect of R&D with that

of the skill composition. Under the standard assumption that the production func-

tion is homogenous with respect to tangible capital and intermediates (of degree γ

and ρ, respectively), we can write

Y = Ag(L)εMρ(λ+ F )βKγ (3)

where A is total factor productivity (unexplained “neutral efficiency”). Moreover,

sales revenue equals S = PY , where P is the (potentially endogenous) output price,

and value added equals V = S − qMM , where qM is the price of intermediates.
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Importantly, the specification (3) allows R&D input, F , to be zero without im-

plying Y = 0. In particular, the marginal output of R&D with respect to F is:

Y ′
F = β

Y

λ+ F

and the R&D elasticity is:

ElFY = β
F

λ+ F

An important property of (3) is that Y ′
F , does not increase towards infinity as F

tends to zero. When λ = 0 , we have the Cobb-Douglas case with ElFY = β and

Y ′
F → ∞ as F → 0. In this case, it will always be profitable to invest in R&D as

the return to R&D at the extensive margin is infinity.

In the empirical model, we assume that ε, ρ and γ are common parameters, but

allow β to be firm-specific, for the purpose of the analysis below.

3.1 Economic behavior

We assume that producers are price takers in all factor markets, but not in product

markets, and that both types of capital, K and F , are fixed in the short run. Thus

the short-run optimization of the firm is with respect to L andM for pre-determined

R&D input, Fit, and tangible capital, Kit. The corresponding labour cost function,

i.e. given the level of aggregate labour input, gi(L), is

Cit(qit, gi(Lit)) = citgi(Lit) (4)

where qit = (q
(1)
it , q

(2)
it , q

(3)
it ) is the vector of firm-specific wage rates of low-, medium-

and high-skilled labour, respectively, and cit is the firm-specific unit price of labour

(the aggregate wage rate). In Appendix A, we derive the formulas in (4) for the case

of a CES aggregation function of labour inputs, L. We also allow gi(·) to be firm-

specific, to be consistent with firms choosing L
(m)
it = 0, for example, not employing

workers in the highest skill category (L
(3)
it = 0).

We next consider the partial optimization problem of firm i at the beginning of

period t conditional on the predetermined variables Fit and Kit, assuming that the

firm knows qit, qMt and Ait. The problem is then to choose the price that maximizes

operating profits. Making the usual assumption of monopolistic competition with
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demand given by:

Yit = ΦitP
−e
it

where Φit > 0 is a stochastic demand shifter and e > 1 is the elasticity of demand

with respect to Pit, profit maximization gives the following equation for log value

added:

lnVit = −ε̃ ln cit + β̃i ln rit(λ) + γ̃ lnKit − ρ̃ ln qMt + ãit (5)

where ε̃ = εϑ, β̃i = βiϑ, rit(λ) = λ + Fit, γ̃ = γϑ, ρ̃ = ρϑ, and ãit = ϑ(lnAit +

lnΦit/(e− 1)) + θ̃, with

ϑ =
(e− 1)

(ε+ ρ+ e− e(ε+ ρ))
∈ (0, (1− ε− ρ)−1). (6)

See Appendix A for the definition of θ̃ and proof of Equations (5)-(6). The left and

right limits correspond to e→ 1 and e→ ∞, respectively. Equation (5) will be the

key equation for estimating private return to R&D.

We have no information on firm-specific intermediate input prices, so the term

involving ln qMt in Equation (5) cannot be distinguished from time dummies in our

empirical specification – and therefore ρ̃ cannot be identified. On the other hand,

we do observe firm-specific wages. The problem that the aggregate wage rate, cit, is

an unknown function of qit, is overcome by using the Sato-Vartia index:

cit
ci,t−1

=
3∏

k=1

(
q
(k)
it

q
(k)
i,t−1

)ω
(k)
it

where the weights, ω
(k)
it , are proportional to the geometric average of the (observable)

cost shares α
(k)
it and α

(k)
i,t−1 of skill class k:

α
(k)
it =

q(k)
it
L
(k)
it∑3

k=1 q
(k)
it L

(k)
it

(7)

The Sato-Vartia index is exact in the case of the CES aggregator function, where

gi(L) = g(L; ai) for weight parameters, ai = (a
(1)
i , a

(2)
i , a

(3)
i ) (see Appendix A for

formulas). In that case we have the well-known result that α
(k)
it = a

(k)
i

(
q
(k)
it /cit

)1−σ

(see Diewert, 1978 and Brasch et al., 2022). More important for our purpose is

that the Sato-Vartia index is consistent to the second order with any exact, twice
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differentiable aggregator function gi(·). We can therefore apply the Sato-Vartia

index to obtain:

∆ ln cit =
∑
k

ω
(k)
it ∆ ln q(k)

it
(8)

with the initial condition ln ci1 =
∑

k ω
(k)
i2 ln q(k)

i1
.

3.2 Returns to R&D

We define

Rit =
∂Vit
∂Fit

=
β̃iVit
Fit + λ

(9)

as our proposed value added-based measure of private returns to R&D investment,

with a potential distinction between intramural and extramural R&D, as discussed

in the introduction. In the tradition of Hall et al. (2010), it is often assumed that Rit

varies randomly about a common mean, R, where R is the constant marginal cost of

R&D. To apply this assumption in our context, where F and K are pre-determined

– and therefore based on ex ante expected returns – we define V e
it = E(Vit |Fit, Kit)

and assume the existence of a steady state defined as follows:

E(Rit|Fit, Kit) =
β̃iV

e
it

Fit + λ
= R (10)

The first equality follows from (9), assuming:

Vit = V e
it + eit

for a genuine error term, eit, whereas the second equality says that in a steady

state with Fit > 0 (the firm has Iis > 0 for some s < t), expected returns equal the

marginal cost of R&D. Equation (10) can be interpreted as an equilibrium correction,

where a firm over time adjusts Fit towards a firm-specific equilibrium R&D intensity

(but not necessarily R&D level). As we discuss below, the adjustment may be

sluggish and hampered by adjustment costs and uncertainty, so that in general

Rit ̸= R. Given the above formal assumptions:

β̃iVit = (Fit + λ)R + β̃ieit (11)
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If direct data on Rit were available and λ was known, an unbiased estimator of R

would be the following weighted average:

T∑
t=1

ωitRit = R + β̃i

∑T
t=1 eit1(Fit>0)∑T

t=1(Fit + λ)1(Fit>0)

(12)

where 1(A) denotes the indicator function which is equal to one if the statement A is

true and the weights ωit = (Fit + λ)1(Fit>0)/
∑T

t=1(Fit + λ)1(Fit>0) give equal weight

to each NOK of R&D. Taking the expectation conditional on Fit > 0 on both sides

of (11) yields:

β̃i = Rψi(λ) (13)

where

ψi(λ) =
E(Fit|Fit > 0) + λ

E(Vit|Fit > 0)
(14)

The function ψi(λ) represents an equilibrium R&D intensity where the firm has

positive R&D capital stock (Fit > 0). Note that ψi(λ) varies across i only because

β̃i does so. We will refer to Equations (13)-(14) as the constant marginal cost (CMC)

model. In particular, the CMC model explains why some firms never invest in R&D,

namely if β̃i < Rψi(λ) for any positive investment.

Estimating R as an average of the Rit would require that all the β̃i are estimable,

which is impossible because of the incidental parameter problem. An alternative

strategy is the following: (i) replace ψi(λ) with

ψi(λ) =

∑T
t=1 1Fit>0(Fit + λ)∑T

t=1 1Fit>0Vit
(15)

which depends on only one unknown parameter (λ); (ii) substitute (15) into (13) to

eliminate the incidental parameters β̃i (replacing ψi(λ) with ψi(λ)); and iii) estimate

R and λ using GMM (see Section 5).

In the literature, the usual assumption is that βi = β (no heterogeneity in the

elasticity of Y with respect to F ), implying ψi(λ) = ψ(λ) for all i under the CMC

assumption. We will refer to this special case as the restricted CMC model (R-

CMC), which can be stated as:

β̃ = Rψ(λ) (16)
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The function ψ(λ) represents an equilibrium R&D intensity that does not depend

on i. Therefore, there should be no systematic or persistent differences in R&D

intensities across firms. To estimate the average return, R, in the R-CMC-model,

we can do the following: (i) estimate β̃ and λ using GMM, (ii) obtain individual

Rit estimates from Equation (9), and (iii) calculate the average of Rit as in equation

(12), but summing over all firm-years (i, t).

By definition, ψi(λ) or ψ(λ) refers to an equilibrium state where the ratio between

Vit and Fit is stable. However, in the presence of adjustment costs, firms with a short

R&D history are likely to be far from their equilibrium R&D intensity. It is well

documented in the literature on tangible capital that large changes in the level

of capital generate disruption costs, for example due to learning-by-doing. As a

consequence, investment is not fully productive until after some time has passed

since it was made. Cooper and Haltiwanger (2006) find that a combination of

disruption costs and irreversibilities, where the selling price of capital is lower than

the purchasing price, best fit the key features of observed investment series. A

recent, but sparse, literature on the implications of adjustment costs for the time

series properties of R&D investment suggests that fixed costs will cause higher rates

of return for firms that invest relatively more in R&D (see Resutek 2022).

We suspect that learning-by-doing and disruption costs may be the most impor-

tant grounds for adjustment costs for firms that start doing R&D. This supposition

is based on Brasch et al. (2020), who show that start-up firms have much lower rev-

enue labour productivity, Vit/Lit, than incumbent firms, and we conjecture that the

same factors will cause “R&D productivity”, Vit/Fit, to be low for firms with a short

history of R&D compared to more R&D-experienced firms, implying ψi(λ) < ψi(λ)

in the former group of firms. Regardless, ψi(λ) may be severely biased as an esti-

mator of ψi(λ) for firms with a short R&D history.

A simple remedy would be to assume that:

ψi(λ) ≃ ψi(λ)
(
1 + τbegin1(Ti≤T begin)

+ τexper1(T begin<Ti≤T exper)

)
(17)

where

Ti =
T∑
t=1

1(Fit>0) (18)

16



is the number of years with positive R&D (Fit > 0) at the last observation year, T ,

whereas τbegin and τexper represent, respectively, the average bias of ψi(λ) as an esti-

mator of ψi(λ) for R&D-beginners (defined as Ti ≤ T begin) and R&D-experienced (de-

fined as T begin < Ti ≤ T exper) relative to firms with Ti > T exper (R&D-incumbents).

In our operationalization we define T begin and T exper as the first and third quartiles

of the distribution of Ti at the last observation year, T . Thus, R&D-beginners are

the 25 percent of firms with least R&D experience in the sample recorded at the

last observation year, and R&D-incumbents are the 25 percent with the most R&D

experience.

If ψi(λ) ≃ ψi(λ)(1 + τbegin), a negative estimate of τbegin would indicate that

the equilibrium R&D intensity of firms with little R&D experience is overestimated.

Then, the weighted average return is:

T∑
t=1

ωitRit ≃ R(1 + τbegin)

where we used Equations (9), (13), (15) and (17). A negative parameter τbegin would

capture low returns to R&D in firms with little R&D experience.

4 Variable construction and descriptive statistics

For our analysis, we have constructed a panel of annual firm-level data for Norwe-

gian firms with at least three consecutive observations in the period 2001–2018. The

basis for the sample is the R&D statistics, which are survey data collected by Statis-

tics Norway. These data comprise detailed information on firms’ R&D activities,

such as total R&D expenses (divided into internally performed R&D and exter-

nally purchased R&D), the number of employees engaged in R&D activities, and

the number of man-hours worked in R&D. Only firms with more than 50 employees

are automatically included in the survey. For smaller firms (with 5–49 employees)

a stratified sampling scheme is employed. The stratification is based on industry

classification (NACE codes) and firm size. However, these smaller firms are not rep-

resentative of firms of their size and industry, because they have a higher probability

of engaging in R&D. We use data for 1993, 1995, 1997, 1999, and annual data from

2001 to 2018. To supplement the regular R&D census, we obtained questionnaire

17



data from the tax credit scheme Skattefunn on each applicant’s R&D expenditure

for three years prior to their applying for tax credits. These data are collected by

the Research Council of Norway, which must approve in advance any project that is

to form the basis for tax credits. The information from all available surveys is used

for the construction of R&D capital stocks.

The survey data on R&D are supplemented with data from four different regis-

ters: the accounts statistics, the Register of Employers and Employees (REE), the

National Education Database (NED) and the R&D Support Database.2 This last

contains information about each firm’s R&D support in the period 2001-2018 – both

direct support and tax credits. Descriptive statistics are provided in Appendix B.

Value added, V , is gross value added at factor cost computed as operating income

(pY ) less intermediate factor costs (qM): V = pY − qM . If both intramural and

extramural R&D are included in F , intermediate factor costs, qM , are calculated

as total operating costs less labour costs, depreciation and extramural R&D, as it

is common practice to classify extramural R&D as an intermediate input (“other

operating costs”). We do not subtract intramural R&D from total operating costs

to obtain qM , as intramural R&D costs consist mostly of labour costs (and, to a

lesser degree, costs of tangible capital), which have already been subtracted. Any

intramural R&D costs labelled “other operating costs” (rather than labour or capital

costs) in the accounts may cause a downward bias in the return to R&D estimates

by being incorrectly included in qM . On the other hand, if only intramural R&D is

included in F , extramural R&D is assigned to the intermediate inputs, qM .

All prices are deflated by the price index for R&D investments, so that, in any

time period, one NOK of any cost component has the same value as one NOK of

a revenue component (this is equivalent to normalizing the price of R&D to NOK

1). The price index is based on the price indices from the national accounts for

the various components making up total R&D. According to Hall et al. (2010) the

choice of deflator usually does not matter much for the econometric results for the

main parameters of interest.

Intramural and extramural R&D expenditures are annual data as reported in the

2In Norwegian: Virkemiddeldatabasen
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R&D statistics. Following Hall and Mairesse (1995), the (real) R&D capital stock

(Fit) at the beginning of year t is computed by the perpetual inventory method (2)

using the depreciation δ = 0.15. The benchmark for the R&D capital stock at the

beginning of the observation period for a given firm i, Fi1, is calculated as if it was

the result of an infinite R&D investment series, Ii,−t, for t = 0, 1, 2, ..., with a fixed

presample growth rate g=0.05 (cf. Equation (5) in Hall and Mairesse, 1995).

The properties of some aggregate R&D series are shown in Figure 1, where

R&D capital services are defined as (r + δ)Fit for two definitions of I as explained

in Section 2: I = int + x or I = int, and interest rate r = 0.05.3 Total R&D

expenditures (intramural plus extramural) follow roughly the same trend growth as

total R&D services when I = int+x. However, R&D capital services are lower than

total expenditures in most of the period 2001-2018, in particular in the period from

the financial crisis in 2008 until 2015, where total R&D services continue to grow,

although with increased volatility, whereas total R&D expenditures drop markedly

before rebounding in 2015. On the other hand, the series for intramural R&D

services and intramural expenditures follow each other closely with regard to both

level and growth, where intramural R&D services are calculated by setting I = int

in the PIM formula (2). The series for extramural R&D is almost flat throughout

the period, suggesting that intramural R&D is the only source of growth in R&D at

the aggregate level.

To construct the physical capital stock, K, we used information from the busi-

ness accounts statistics , which distinguish between several groups of physical assets.

To obtain consistent definitions of asset categories over the whole sample period, all

assets have been divided into only two types: equipment, which includes machin-

ery, vehicles, tools, furniture and transport equipment, and buildings and land (real

property). The expected lifetimes of equipment (of about 3–10 years) are consider-

ably lower than those of buildings and land (about 40–60 years). Total aggregate

capital stock, K, is an aggregate of the book value of equipment capital and real

property (see Nilsen et al. 2009, Section 2.2 for details).

Man-hours in skill group k, L
(k)
it , is the sum of all individual man-hours worked

3This is approximately equal to the average real lending rate of Norwegian banks in the period
2001-2018 (see Figure 1.6 in Wettre, 2021)
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by employees in that group in the given firm according to their contract. For each

firm, we distinguish between three skill groups: employees with primary, secondary

and post-secondary education (see Table 7 in Appendix C). Man-hours worked by

persons in skill group k are aggregated to firm level to construct L(k). When calcu-

lating the (average) wage in each skill group, q
(k)
it , we use predicted wages resulting

from a wage regression with random individual effects, in which we include dummies

for skill category (k) and dummies for industry (NACE 2), region, gender and cal-

endar year as regressors. The average of the predicted wages for all firm employees

in the given skill category generated by this regression forms the basis for calculat-

ing q
(k)
it . Using matched employer-employee data we are able to match each firm

with its registered employees over time. This prediction-based method is chosen to

reduce the problem of errors in reported hours in the employer-employee register.

Errors are often related to part-time employees and/or timeliness problems, because

hours are reported by the week and wage costs by the year. When estimating the

wage equation we therefore restrict the sample to full-time employees in the given

calendar year. The series for average log-wage by skill class and the log-wage index

are shown in Figure 2. The index closely follows the average wage of skill class 2,

although with a slightly steeper trend as a result of increased shares of workers in

skill classes 2 and 3 over time. See Table 8 for detailed descriptive statistics for all

the key variables used in the model.

5 Empirical analyses

The dependent variable in the empirical analysis is lnVit and the stochastic specifi-

cation of the structural Equation (5) is:

lnVit = −ε̃ ln cit + γ̃ lnKit + β̃i ln rit(λ) + ai + µ∗
t + ζit (19)

where ai is a fixed firm effect, µ∗
t is the fixed time-effect (which incorporates the

term ρ̃ ln qMt), and ζit is an error term assumed to follow a first-order autoregressive

process:

ζit = ϕζi,t−1 + eit (20)
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Figure 1: Aggregate R&D services and expenditures, by type

with

|ϕ| ≤ 1, E[eit] = 0, E[e2it] = σ2
e , E[ζ

2
it] = σ2

ζ

and

Cov[eit, ejs] = 0 if t ̸= s or i ̸= j.

Multiplying (19) by ϕ and quasi-differencing, yield:

lnVit = ϕ lnVi,t−1 − ε̃ ln c
it
+ ϕε̃ ln c

i,t−1
+ β̃i ln rit(λ)− ϕβ̃i ln ri,t−1(λ)

+ γ̃ lnKit − ϕγ̃ lnKi,t−1 + vi + µt + eit (21)

where µt = µ∗
t −ϕµ∗

t−1 and vi = (1−ϕ)ai. Next, we difference to eliminate the fixed

firm effect, vi:

∆ lnVit = ϕ∆ lnVi,t−1 − ε̃∆ ln c
it
+ ϕε̃∆ ln c

i,t−1
+ β̃i∆ ln rit(λ)− ϕβ̃i∆ ln ri,t−1(λ)

+ γ̃∆ lnKit − ϕγ̃∆ lnKi,t−1 +∆µt +∆eit (22)

Equation (22) constitutes the basis for GMM estimation.

5.1 The GMM Estimator

For given λ, the structural parameters are estimated by applying two-step GMM

to Equation (22), where the initial (first-step) weight matrix is optimal under the

assumption of i.i.d. errors eit (implying that ∆eit is MA(1)). We use lagged levels of
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Figure 2: Average log-wage by skill class and average log-wage index (ln cit)

the endogenous variables as instruments, as proposed by Arellano and Bond (1991).

To estimate λ, we perform a grid search in λ-space to minimize the sum of squares of

the prediction errors of the structural Equation (22) (referred to as residuals), which

is equivalent to maximizing the generalized R2 model selection criterion proposed

by Pesaran and Smith (1994) in the context of IV estimation.4

Following the general methodology of Arellano and Bond (1991) for dynamic

panel data models, the GMM-estimator uses the following moments:

E(lnVi,t−s∆eit) = 0

E(ln ci,t−s+1∆eit) = 0

E(ln ri,t−s+1(λ)∆eit) = 0

E(lnKi,t−s+1∆eit) = 0

for s ≥ 2 (see Equation (22)). That is, we treat all the right-hand side variables in

Equation (22) as pre-determined endogenous variables. Our method does not rely

on the often used, but strong, initial condition assumptions of Blundell and Bond

(1998) to obtain additional moment conditions. A testable identifying assumption

4The prediction errors are obtained by replacing the endogenous explanatory variables in Equa-
tion (22) with their predicted values from the first-stage of 2SLS; see Pesaran and Smith (1994)
for details.
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is that ∆eit is an MA(1) noise term. Our results displayed in Figure 3 show that a

very small λ (λ̂ = 0.37) minimizes the residual sum of squares, i.e. an estimate on

par with the lowest positive Fit observation in our estimation sample. In fact, this

estimate supports the common practice of adding a “small” number to R&D capital

to avoid zero input in a Cobb-Douglas production function.

Figure 3: Residual sum of squares as a function of λ in the CMC model

As discussed in Section 3, we examine two specifications with respect to the

marginal cost of R&D. The first is the CMC-model given by Equations (13)-(14),

where we assume a firm-specific elasticity, β̃i, and a common cost of R&D, R, with a

firm-specific steady-state R&D intensity, ψi(λ). In this model, β̃i = Rψi(λ). Using

Equation (17) to approximate ψi, we consider R, τbegin and τexper as GMM estimands.

The second case is a restricted version of this model, referred to as R-CMC, where

we assume a common elasticity for all firms: β̃i = β̃ and consider β̃ to be the GMM

estimand. Given β̃ and λ, it is straightforward to derive an estimate of R as an

R&D-weighted average of Rit, as explained in Section 3.2.

5.2 Parameter estimates

The parameter estimates for the model with symmetric treatment of intramural and

extramural R&D: I = int + x, are presented in Table 1. As a benchmark we also

include a fixed-effects (FE) estimator of the R-CMC model. The FE estimator is the

conventional within-estimator applied to the level Equation (19). This method yields
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biased estimates in the presence of endogeneous time-varying explanatory variables.

In general there are only small difference between FE-estimates and GMM-estimates

in Table 1, indicating there there is little endogeneity bias related to the time varying

covariates.

Table 1: Estimates of the coefficients of the value added equation with symmetric
treatment of intramural and extramural R&D (I = int+x). Robust standard errors
(SE)

Indep. variables in Coeff. GMM-estimates FE-estimates
structural equation CMC R-CMC R-CMC

Est. SE Est. SE Est. SE
lnVi,t−1 ϕ .306 .011∗∗∗ .311 .021∗∗∗

− ln cit ε̃ .502 .164∗∗∗ .509 .167∗∗∗ .639 .110∗∗∗

lnKit γ̃ .195 .016∗∗∗ .207 .016∗∗∗ .166 .006∗∗∗

ln rit(λ) β̃ .045 .003∗∗∗ .042 .002∗∗∗

ψi(λ) ln rit(λ)
1 R .181 .049∗∗∗

ψi(λ)1(Ti≤3) ln rit(λ)
2 τbegin -.180 .049∗∗∗

ψi(λ)1(Ti∈[4,12]) ln rit(λ) τexper -.029 .053
σ2
e .11 .11 —
σ2
ζ — — .41
λ .38 .38 .38
Number of firm-years 40,344 40,344 40,344
Number of firms 4,590 4,590 4,590
R-squared (R2)3 .10 .10 .41

Note: Windmeijer (2005) robust standard errors (SE); ∗,∗∗,∗∗∗ refer, respectively, to significant esti-
mates at the 10, 5, and 1 percent level.

1 ψi(λ) refers to the firm’s average R&D intensity, as defined in Equation (15).
2 Ti is the number of years with Fit > 0 in the years 2001-2018.
3 R2 refers to (the differenced) Equation (22) in the case of GMM and (the level) Equation (19) in the
case of FE.

In the R-CMC model, where it is assumed that βi = β for all i, the coefficient

of ln rit(λ) is the common elasticity with respect to R&D, β̃. It is estimated to be

slightly higher than 0.04 and significantly positive regardless of estimation method

(GMM or FE). In the CMC model, the coefficient of ψi(λ) ln rit(λ) equals R. It is

estimated to be 0.181, i.e. 18.1 percent. The terms ψi(λ)1(·Ti·) ln rit(λ), where 1(·Ti·)

refers to an indicator function involving Ti, can be interpreted as the gross return

in addition to R for the group defined by 1(·Ti·) = 1. The estimated average return

is significantly lower than R for R&D-beginners (Ti ≤ 3), in fact only 18.1-18.0 =

0.01 percent. Moreover, the average gross return is estimated to be 2.9 percentage

points lower for R&D-experienced firms (between 4 and 12 years of R&D experience)
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compared to R&D-incumbents (the reference category), but the difference is not

significant. Thus, with the exception of R&D-beginners, the average gross return to

R&D appears to be about 18 percent.

As expected, we find a significant positive relationship between tangible capital

and value added: the estimated elasticity with respect to K obtained using different

estimation methods lies in the range 0.17-0.21, and is three to four times larger

than the estimated (common) elasticity with respect to R&D capital, β̃. The GMM

estimates of the autoregressive coefficient ϕ in Table 1 – the coefficient of lnVi,t−1 –

are 0.306 and 0.311 and highly significant. Since the FE estimator uses the equations

in levels, before quasi-differencing, ϕ is not identified in this case.

The coefficient of − ln cit is ε̃ and is estimated to be in the range 0.5-0.6 across

specifications and estimation methods. The results show that labour is the produc-

tion factor with the highest output elasticity.

The last row of Table 2 reports R2 statistics. The much lower R2 corresponding

to the GMM-estimates of Equation (22) (0.10) compared to the FE-estimates of

Equation (19) (0.41) is due to the loss of level information in the former equation:

Equation (22) is a quasi-differenced version of (19). In fact, within-R2 equals 0.10

in the case of the FE-estimator.

As seen from Table 2, the Arellano–Bond test for zero first-order autocorrelation

in the error term ∆eit leads to rejection, but not the test for second-order autocorre-

lation. This confirms that ζit follows a first-order autoregressive process, as assumed

in Equation (20). We also applied a Hansen J-test of the validity of overidentifying

restrictions with regard to the instrumental variables. With a χ2-test statistic of

634.51 and 619 degrees of freedom, we cannot reject the overidentifying restrictions.

All these specification tests, seen together, give strong support for our econometric

specification.

5.3 Returns to R&D

Using the GMM estimates displayed in Table 1, we calculate the marginal returns

to R&D investment, Rit = ∂Vit/∂Fit, for each observation as explained in Section 3.

It is important to realize that each Rit represents a prediction of the gross return on
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Table 2: Specification tests of CMC model

Observed value Level of significance
of test statistic (Z) Pr(Z > z)

Test of zero autocorrelation in errors∗

order 1 -14.54 .000
order 2 1.58 .110

J-test of overidentifying restrictions∗∗ 634.51 .321
Notes: ∗t-test ∗∗ Hansen (1982) test statistics is distributed as χ2(619)

Table 3: Distribution of estimated marginal gross returns to R&D (Rit) with
symmetric treatment of intramural and extramural R&D (I = int + x). By
subsample, conditional on Fit > 0

Model All obs. Subsample with Fit > 0
Fit > 0 R&D- R&D- R&D-

begin.1 exper.2 incumb.3

CMC: heterogeneous elast.
Weighted average4) .173 .001 .146 .177
Median .169 .001 .153 .190
Unweighted average .270 .001 .276 .294
R-CMC: common elasticity
Weighted average .209 .628 .334 .191
Median .422 .678 .520 .344
Unweighted average 6.47 8.56 6.17 6.45
Share of R&D in 2018 (share

∑
i Fi,2018) 1 .05 .17 .78

No. of firm-years with Fit > 0 30,331 2,370 15,507 27,822
No. of firms with Fit > 0 4,238 1,046 2,146 1,046

Note: Derived using the GMM estimates displayed in Table 1
1 Firms that were R&D-active (i.e., with Fit > 0) for maximum 3 years in the period 2001-2018
2 Firms that were R&D-active for between 4 and 12 years in the period 2001-2018
3 Firms that were R&D-active for more than 12 years in the period 2001-2018
4 Weighted by share of R&D (Fit)

an additional NOK investment in R&D capital in one year – not the actual return

on the last amount invested. Of course, the ex post return cannot be meaningfully

assessed as we cannot identify the marginal investment in isolation from the stock

of capital. To evaluate the magnitude of Rit, we should keep in mind that both

the interest rate and the depreciation rate of 15 percent, as well as a risk premium,

should be covered.

Different average and median gross return values by amount of R&D experience

(number of years with Fit > 0 in 2001-2018) are displayed in Table 3, with 1/4 of

the firms classified as R&D-beginners and 1/4 as R&D-incumbents. The estimated
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marginal gross returns have R&D-weighted averages of 17.3 and 20.9 percent in the

CMC and R-CMC models, respectively. We see that the R&D-beginners account

for only 5 percent of the total R&D stock in 2018 (the last observation year); the

R&D-experienced firms account for 17 percent, and the R&D-incumbents account

for 78 percent. Thus quite a small share of the firms accounts for a very large

share of R&D investment. As we anticipated, the results show highest returns for

R&D-experienced firms and lowest returns for R&D-beginners (in fact, close to zero),

likely reflecting high adjustment costs, as discussed in Section 3.2. The 3 percentage

points difference in average returns between R&D-experienced and R&D-incumbents

is driven by the negative, but insignificant, τexper estimate in Table 1.

Looking at the returns in the different groups of firms and across models, we find

some striking patterns. In the CMC model, average and median returns are much

more homogeneous across the groups than in the R-CMC model. In contrast, the

R-CMC model shows a pattern of much higher unweighted average returns in all

groups (more than 5) compared to the CMC model (less than 0.3). These results

indicate that the R-CMC model is too rigid. However, if we only care about the

weighted average return to R&D, the estimates are quite similar, from 17-21 percent

gross return.

Our weighted average gross return of 17-21 percent, which is equivalent to a net

return of 2-6 percent, is low compared to the rate of return commonly observed in

the international literature, see Hall et al. (2010). In a more recent comprehensive

survey of the literature, Ugur et al. (2016) found that estimated rates of return

are much smaller and more heterogeneous than reported in the earlier literature.

Our estimates are, in fact, close to the average gross return of 14 percent found

by Ugur et al. (2016), using regression methods of meta-analysis. They found that

returns are lower for small firms, which is consistent with our finding of lower returns

for R&D-beginners. They also report that estimates obtained using GMM and IV

are lower compared to OLS, pointing to an endogeneity problem which is carefully

addressed in our study. We have also addressed many other issues that they raise,

such as double-counting of R&D, firm heterogeneity and the need to take dynamics

into account.
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5.4 Asymmetric treatment of intramural and extramural
R&D (I = int)

The results for the model with asymmetric treatment of intramural R&D (int) and

extramural R&D (x) are shown in Table 4 (coefficient estimates) and Table 5 (av-

erage gross returns). In this model version, only int is counted as R&D investment,

while x is included as a part of intermediate input, M , as discussed in Section 2.

A comparison of Tables 1 and 4, reveals significant differences in the returns

to R&D estimates in the CMC model, but very small differences otherwise. Most

importantly, in Table 4 the average gross return to R&D (the parameter R) is

estimated to be 27.4 percent (with SE 2.6 percent), compared to 18.1 percent in

Table 1 (with SE 4.9 percent). The higher returns are similarly reflected in Table

5, where, for example, the estimated weighted average return is 25.6 in the CMC

model, where GMM estimation is used, and 22-24 percent in the R-CMC model

where FE estimation is used. These results should not come as a surprise: since the

growth of extramural R&D is virtually zero (see Section 4), it is hard to attribute

any return to extramural R&D. Consequently, the average return is higher when

only intramural R&D is counted as an investment, and extramural R&D is treated

as intermediate inputs.

Interestingly, our results contrast strongly with those of Bönte (2003), in his

study of external and internal R&D on aggregate (2-digit) West German industry

data in the period 1980-1993, with a focus on high-tech industries. He finds an

inverse U-relationship between productivity growth and the share of external R&D

relative to total R&D. In contrast to Norway in 2001-2018, external R&D constitutes

an increasing share of R&D in Germany in 1980-1993, pointing perhaps towards

fundamental structural differences between the two countries and time periods.

5.5 The Cobb-Douglas model

As a final robustness check, we have estimated all the model variants considered

above for the “workhorse ” Cobb-Douglas model, i.e. the special case with λ = 0.

The estimation sample then have to be restricted to firm-years with Fit > 0. The

derived return estimates are shown in Table 6 and the corresponding parameter
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Table 4: Coefficient estimates when only intramural R&D are treated as invest-
ments (I = int). Robust standard errors (SE)

Indep. variables in Coeff. GMM-estimates FE-estimates
structural equation CMC R-CMC R-CMC

Est. SE Est. SE Est. SE
lnVi,t−1 ϕ .299 .011∗∗∗ .340 .010∗∗∗

− ln cit ε̃ .678 .164∗∗∗ .686 .172∗∗∗ .618 .112∗∗∗

lnKit γ̃ .165 .015∗∗∗ .190 .016∗∗∗ .169 .006∗∗∗

ln rit(λ) β̃ .045 .003∗∗∗ .040 .002∗∗∗

ψi(λ) ln rit(λ)
1 R .274 .026∗∗∗

ψi(λ)1(Ti≤3) ln rit(λ)
2 τbegin -.272 .055∗∗∗

ψi(λ)1(Ti∈[4,12]) ln rit(λ) τexper -.082 .057
σ2
e .11 .11 —
σ2
ζ — — .40
λ .35 .35 .35
Number of firm-years 40,344 40,344 40,344
Number of firms 4,590 4,590 4,590
R-squared (R2)3 .10 .10 .44

Note: Windmeijer (2005) robust standard errors (SE); ∗,∗∗,∗∗∗ refer, respectively, to significant esti-
mates at the 10, 5, and 1 percent level.

1 ψi(λ) refers to the firm’s average R&D intensity, as defined in Equation (15).
2 Ti is the number of years with Fit > 0 in the years 2001-2018.
3 R2 refers to (the differenced) Equation (22) in the case of GMM and (the level) Equation (19) in the
case of FE.

estimates in Table 9 in Appendix C. Table 6 reveals some striking patterns. First,

the model with heterogeneous elasticities (the CMC model), yields return estimates

of the same magnitude as those obtained with optimally chosen λ > 0, i.e. the

weighted average gross return is about 15 percent with symmetric treatment of

intramural and extramural R&D (I = int+x) and 25 percent when only intramural

R&D is treated as investment (I = int). Also the estimated median and unweighted

average returns are of the same magnitude in Table 3 and Table 6 – regardless of

the chosen definition of I. However, the results become remarkably different when

homogeneous elasticities are imposed. In that case, the weighted average return

estimates are of magnitude 50-100 percent – depending on the estimation method

and definition of I. In any case, the latter estimates should be disregarded as

they are volatile and implausibly high. A main insight of this paper is therefore

that allowing for heterogeneous elasticities with respect to R&D is key to obtaining

robust and plausible estimates of returns to R&D across model specifications. The
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Table 5: Distribution of estimated marginal gross returns to R&D (Rit) when
only intramural R&D are treated as investments (I = int). By subsample,
conditional on Fit > 0

Model All obs. Subsample with Fit > 0
Fit > 0 R&D- R&D- R&D-

begin.1 exper.2 incumb.3

CMC: heterogeneous elast.
Weighted average4) .256 .001 .184 .268
Median .238 .001 .153 .194
Unweighted average .339 .002 .276 .287
R-CMC: common elasticity
Weighted average .241 .900 .334 .221
Median .420 .655 .493 .357
Unweighted average 3.71 5.03 3.05 4.01
Share of R&D in 2018 (share

∑
i Fi,2018) 1 .05 .17 .78

No. of firm-years with Fit > 0 30,331 2,370 15,507 27,822
No. of firms with Fit > 0 4,238 1,046 2,146 1,046

Note: Derived using the GMM estimates displayed in Table 4.
1 Firms that were R&D active (i.e., with Fit > 0) in maximum 3 years in 2001-2018
2 R&D active firms between 4 and 12 years in 2001-2018
3 R&D active firms for more than 12 years in 2001-2018
4 Weighted by share of R&D (Fit)

definition of R&D capital is clearly also of key importance.

6 Conclusions

This paper has revisited the estimation of the private returns to R&D. We have

proposed an extended Cobb-Douglas production function, which allows for firms

with zero R&D capital, in order to study the transition from being R&D non–

active to active, without restricting the sample to R&D performers. In the standard

approach, the returns to R&D only incorporate the impact of increased R&D on

productivity or production costs. In contrast, we have obtained return estimates

from a value added function derived under the assumption of profit maximizing firms

that optimize labour and intermediate factor inputs at any level of R&D capital.

The value added function captures both increased profits to owners and increased

earnings to employees resulting from R&D investment.

We further have accommodated the huge observed heterogeneity in R&D inten-

sities by allowing R&D elasticities to be firm-specific, which we showed to be key
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Table 6: Distribution of marginal gross returns to R&D (Rit) estimated using
Cobb-Douglas production function (λ = 0) and different definitions of R&D
investment. By subsample, conditional on Fit > 0

Model All obs. Subsample with Fit > 0
Fit > 0 R&D- R&D- R&D-

begin.1 exper.2 incumb.3

Symmetric treatment of intramural and extramural R&D (I = int+ x)

CMC: heterogeneous elast.
Weighted average4) .138 -.241 .241 .150
Median .116 -.270 .052 .161
Unweighted average .172 -.373 .276 .248
R-CMC: common elasticity
Weighted average .637 1.23 1.33 .598
Median 1.21 1.48 1.54 1.06
Unweighted average 24.9 63.5 20.82 25.78
Only intramural R&D treated as investment (I = int)

CMC: heterogeneous elast.
Weighted average4) .249 -.295 .241 .253
Median .267 -.330 .270 .271
Unweighted average .357 -.429 .357 .390
R-CMC: common elasticity
Weighted average .991 2.84 1.33 .939
Median 1.65 2.04 1.96 1.49
Unweighted average 16.05 19.09 13.07 17.59

Note: Returns estimates derived from models estimated using GMM on subsample of observa-
tions with Fit > 0. See Table 9 in Appendix C.

1 Firms that were R&D-active (i.e., with Fit > 0) for maximum 3 years in the period 2001-2018
2 Firms that were R&D-active for between 4 and 12 years in the period 2001-2018
3 Firms that were R&D-active for more than 12 years in the period 2001-2018
4 Weighted by share of R&D (Fit)
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to obtain robust estimates of returns to R&D within a family of model variants,

including Cobb-Douglas, and incorporated heterogeneity in labour quality by dis-

tinguishing between three levels of employee educational attainments. Estimating

the model on a comprehensive panel of Norwegian firms observed in the period

2001-2018, we obtained estimates of the average private gross return in the range

15-20 percent, i.e. net return in the range 0-5 percent, with a symmetric treatment

of intra- and extramural R&D. These estimates are similar to the average gross

return of 14 percent reported by Ugur et al. (2016) in a meta analysis based on

a very comprehensive literature – but low compared to estimates more commonly

reported, e.g. by the often cited survey by Hall et al. (2010). However, if we count

only intramural R&D as investments, as recommended by the Frascati manual, the

estimated net returns increase to 5-10 percent.
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Appendix A. Derivation of Equation (5) and some

related results

The production function is:

Yit = A∗
itM

ρ
itg(Lit, Hit)

ε

where A∗
it = Ait(λ+ Fit)

βKκ
it (which we in this appendix consider as fixed) and

g(Lit, Hit) =
[
a

1
σL

(σ−1)/σ
it + (1− a)

1
σH

(σ−1)/σ
it

]σ/(σ−1)

is the CES aggregate of (man hours from) high-skilled and low-skilled workers, Hit

and Lit (the generalization to any number of types of workers is straightforward).

Cost-minimization with respect to Lit and Hit, given factor prices for high and low

skilled labour, wl
t and wh

t , conditional on Mit and Yit, gives the conditional cost

function

C(Mit, Yit) = cit

(
Yit

A∗
itM

ρ
it

) 1
ε

with

cit =
[
a(wl

it)
1−σ + (1− a)(wh

it)
1−σ
] 1

1−σ .

Now consider the problem of finding the cost minimizing Mit, given qMt and cit:

M∗
it = argmin

Mit

(qMtMit + C(Mit, Yit))

= argmin
Mit

(
qMtMit + cit

(
Yit

A∗
itM

ρ
it

) 1
ε

)
The 1. order condition for cost minimization is:

lnM∗
it =

1

ρ+ ε
(lnYit − lnA∗

it) +
ε

ρ+ ε
ln cit −

ε

ρ+ ε
ln qMt +

ε

ρ+ ε
ln η

where η = ρ/ε. This leads to the following cost function:

Cit(Yit) = cit

(
Yit

A∗
itM

∗ρ
it

) 1
ε

+ qMtM
∗
it

=

 cεitYit

A∗
it

[
η

ρε
ρ+εY

ρ
ρ+ε

it A
∗ −ρ
ρ+ε

it c
ρε
ρ+ε

it q
−ρε
ρ+ε

Mt

]


1
ε

+ qMt

[
η

ε
ρ+εY

1
ρ+ε

it A
∗ −1
ρ+ε

it c
ε

ρ+ε

it q
−ε
ρ+ε

Mt

]

= q
ρ

ρ+ε

Mt c
ε

ρ+ε

it A
∗ −1
ρ+ε

it Y
1

ρ+ε

it [η
ε

ρ+ε + η
−ρ
ρ+ε ] = θq

ρ
ρ+ε

Mt c
ε

ρ+ε

it A
∗ −1
ρ+ε

it Y
1

ρ+ε

it (23)
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where

θ = η
ε

ρ+ε + η
−ρ
ρ+ε =

ρ+ ε

ρ
η

ε
ρ+ε

The factor demand functions can be derived from (23) by Shephards lemma:

lnH∗
it =

1

ρ+ ε
(lnYit − lnA∗

it) + ln cit,h

lnL∗
it =

1

ρ+ ε
(lnYit − lnA∗

it) + ln cit,l

lnM∗
it =

1

ρ+ ε
(lnYit − lnA∗

it) + ln cit,M

and

cit,h = θ × q
ρ

ρ+ε

Mt × ∂
(
c

ε
ρ+ε

it

)
/∂wh

t

cit,l = θ × q
ρ

ρ+ε

Mt × ∂
(
c

ε
ρ+ε

it

)
/∂wl

t

cit,M = θ × c
ε

ρ+ε

it × ∂
(
q

ρ
ρ+ε

Mt

)
/∂qMt

We see that

∂
(
c

ε
ρ+ε

it

)
/∂wl

t =
ε

ρ+ ε
c

−ρ
ρ+ε

it

∂cit
∂wl

it

=
ε

ρ+ ε
c

−ρ
ρ+ε

it ac1−r
it (wl

it)
r−1

∂
(
c

ε
ρ+ε

it

)
/∂wh

t =
ε

ρ+ ε
c

−ρ
ρ+ε

it

∂cit
∂wh

it

=
ε

ρ+ ε
c

−ρ
ρ+ε

it (1− a)c1−r
it (wh

it)
r−1

∂
(
q

ρ
ρ+ε

Mt

)
/∂qMt =

ρ

ρ+ ε
q

ρ−(ρ+ε)
ρ+ε

Mt =
ρ

ρ+ ε
q

−ε
ρ+ε

Mt

In particular, we obtain

lnM∗
it =

1

ρ+ ε
(lnYit − lnA∗

it) +
ε

ρ+ ε
ln cit −

ε

ρ+ ε
ln qMt +

ε

ρ+ ε
ln η (24)

Each firm is assumed to face the demand function:

Yit = ΦitP
−e
it ⇔ Pit = Φ

1
e
itY

−1
e

it (25)

with optimal Yit given by:

Y ∗
it = argmax

Yit

(PitYit − C(Yit))

= argmax
Yit

(
Φ

1
e
itY

e−1
e

it − θq
ρ

ρ+ε

Mt c
ε

ρ+ε

it A
∗ −1
ρ+ε

it Y
1

ρ+ε

it

)
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The 1. order condition is:

e− 1

e
Y

−1
e

it Φ
1
e
it = θq

ρ
ρ+ε

Mt c
ε

ρ+ε

it A
∗ −1
ρ+ε

it

1

ρ+ ε
Y

1−(ρ+ε)
ρ+ε

it

⇕

lnY ∗
it =

−e(ρ+ ε)

e+ ρ+ ε− e(ρ+ ε)
ln ν +

ρ+ ε

e+ ρ+ ε− e(ρ+ ε)
lnΦit −

ρe

e+ ρ+ ε− e(ρ+ ε)
ln qMt

− εe

e+ ρ+ ε− e(ρ+ ε)
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e

e+ ρ+ ε− e(ρ+ ε)
lnA∗

it (26)

where

ν =
e

e− 1

θ

ρ+ ε
=

e

ρ(e− 1)
η

ε
ρ+ε

We do not observe output, but sales, Sit. Using Sit = PitY
∗
it , we can rewrite (26) in

terms of sales:

lnSit =
1

e
lnΦit +

e− 1

e
lnY ∗

it

= ln θS +
1
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We obtain:
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Variable factor costs are given by:

lnC(Y ∗
it ) = ln θ +

ρ
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ln qMt +
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Profit can be written as:
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The manipulations in the above denominator shows that:
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Moreover, Πit/Vit can be simplified to:
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1− ρ− ε
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Appendix B. Data sources

Accounts statistics: All joint-stock companies in Norway are obliged to publish com-

pany accounts every year. The accounts statistics contain information obtained from

the income statements and balance sheets of joint-stock companies, in particular, the

information about operating revenues, operating costs and result, labour costs, the

book values of a firm’s tangible fixed assets at the end of a year, their depreciation,

and write-downs.

The structural statistics: The term “structural statistics” is a general name for

statistics of different industrial activities, such as manufacturing, building and con-

struction, wholesale and retail trade statistics, etc. They all have the same structure

and include information about production, input factors, and investments at the firm

level. These structural statistics are organized according to the NACE standard and

are based on General Trading Statements, which are given in an appendix to the

tax return. The structural statistics contain data on purchases of tangible fixed

assets and operational leasing. These data were matched with the data from the

accounts statistics using the identification number given to the firm by the Register

of Enterprises, which one of the Brønnøysund registers.

R&D statistics: R&D statistics are the survey data collected by Statistics Nor-

way every second year up to 2001 and annually from then on. These data comprise

detailed information about firms’ R&D activities, in particular, about total R&D

expenses with subdivision into internally performed R&D and externally performed

R&D services, the number of employees engaged in R&D activities and the number

of man-years worked in R&D. In each wave, the sample is selected using a stratified

method for firms with 10–50 employees, while firms with more than 50 employees are

all included. Strata are based on industry and number of employees. Each survey

contains about 5,000 firms.

Register of Employers and Employees (REE): The REE contains information

obtained from employers. All employers are obliged to send information to the REE

about each individual employee’s contract start and end, working hours, overtime

and occupation. An exception is made only if a person works less than four hours

per week in a given firm and/or was employed for less than six days. In addition,
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this register contains identification numbers for the firm and the employee, hence,

the data can be aggregated to the firm level.

National Education Database (NED): The NED gathers all individually based

statistics on education from primary to tertiary education and have been provided

by Statistics Norway since 1970. We use this data set to identify the duration

of education. This variable is constructed on the basis of the six-digit Norwegian

Standard Classification of Education (NUS89), the leading digit of which is the code

for the educational level of the person. There are nine educational levels in addition

to the major group for “unspecified length of education.” Education levels are given

in Table 7 in Appendix C.
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Appendix C: Supplementary tables and figures

Table 7: Educational levels

Subdivision of levels Level Class level
0 Under school age

Primary education 1 1st – 7th
2 8th – 10th

Secondary education 3 11-12th
4 12th – 13th
5 14th – 17th

Postsecondary education 6 14th – 18th
7 18th – 19th
8 20th+
9 Unspecified

Source: Statistics Norway
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Table 8: Descriptive statistics for the main variables used in
the final sample

Variable Firm-years Mean Median IQ range
Lit

All firms 71,521 80.6 23 11 60
R&D-begin.1 15,522 43.7 15 7 32
R&D-incumb.2 27,944 129.4 43 17 105

L
(1)
it /Lit 71,521 .134 .038 0 .169

L
(2)
it /Lit 71,521 .583 .591 .453 .722

L
(3)
it /Lit 71,521 .283 .251 .104 .438

Vit/Lit
3

All firms 68,892 1803.0 853.8 618.7 1200.6
R&D-begin. 15,265 1055.7 786.3 560.3 1121.8
R&D-incumb. 27,408 2855.4 887.1 652.9 1249.9
Iit/Lit

4

All firms 45,968 117.4 8.64 0 94.9
R&D-begin. 3,886 203.1 39.4 4.13 187.3
R&D-incumb. 25,880 108.6 9.99 0 82.9
Ii,t−1/Fit

4

All firms 47,575 .224 .117 0 .316
R&D-begin. 4,052 .538 .530 0 1
R&D-incumb. 26,816 .163 .109 0 .217
fit/Vit

4

All firms 46,442 .0485 .031 .008 .118
R&D-begin. 3,956 .0295 .029 .007 .110
R&D-incumb. 25,977 .0505 .034 .008 .123
kit/Vit

6

All firms 65,825 .2445 .033 .009 .107
R&D-begin. 14,320 .1675 .027 .007 .099
R&D-incumb. 26,682 .2715 .042 .012 .122
Πit/Vit

3

All firms 69,967 .4555 .392 .209 .358
R&D-begin. 15,513 .3115 .187 .064 .341
R&D-incumb. 27,861 .5025 .215 .086 .372

Note: V, I, F, f, k,Π denote, respectively, value added, R&D investments
(I = int+x), R&D capital stock, R&D capital services (user cost equivalents
of the stock variable F ), tangible capital services (user cost equivalents of
the stock variable K) and gross operating profits (before depreciation and
amortization) in NOK 1000 fixed 2017 prices

1 R&D active (Fit > 0) in max 3 years in the period 2001-2018 (Ti ≤ 3)
2 R&D active more than 12 years in the period 2001-2018 (Ti > 12)
3 Conditional on Vit > 0
4 Conditional on Fit > 0
5 Weighted average with weight proportional to Vit, i.e., sum of nominator
(over i and t) divided by sum of denominator

6 Conditional on Kit > 0 and Vit > 0
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Table 9: Estimates of the coefficients of the value added equation with Cobb-Douglas
production function (λ = 0) and different definitions of R&D investment. Robust
standard errors (SE)

Indep. variables in GMM-estimates FE-estimates
structural equation CMC R-CMC R-CMC
Symmetric treatment of intramural and extramural R&D (I = int+ x)

Coeff. Est. SE Est. SE Est. SE
lnVi,t−1 ϕ .253 .030∗∗∗ .262 .032∗∗∗

− ln cit ε̃ .526 .322∗ .212 .327 .642 .120∗∗∗

lnKit γ̃ .119 .027∗∗∗ .119 0.028∗∗∗ .160 .008∗∗∗

ln rit(λ) β̃ .141 0.045∗∗∗ .099 .008∗∗∗

ψi(λ) ln rit(λ)
1 R .154 .083∗∗∗

ψi(λ)1(Ti≤3) ln rit(λ)
2 τbegin -.464 .221 ∗∗

ψi(λ)1(Ti∈[4,12]) ln rit(λ) τexper -.101 .119
Only intramural R&D treated as investment (I = int)

Coeff. Est. SE Est. SE Est. SE
lnVi,t−1 ϕ .255 .030∗∗∗ .275 .033∗∗∗

− ln cit ε̃ .636 .326∗ .273 .329 .708 .129∗∗∗

lnKit γ̃ .101 .027∗∗∗ .104 .028∗∗∗ .161 .008∗∗∗

ln rit(λ) β̃ .191 .241∗∗∗ .110 .009∗∗∗

ψi(λ) ln rit(λ) R .259 .094∗∗∗

ψi(λ)1(Ti≤3) ln rit(λ) τbegin -.641 .234∗∗∗

ψi(λ)1(Ti∈[4,12]) ln rit(λ) τexper .013 .126

Note: Estimated on subsample of observations with Fit > 0. Windmeijer (2005) robust standard errors
(SE); ∗,∗∗,∗∗∗ refer, respectively, to significant estimates at the 10, 5, and 1 percent level.

1 ψi(λ) refers to the firm’s average R&D intensity, as defined in Equation (15).
2 Ti is the number of years with Fit > 0 in the years 2001-2018.
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